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We present the complete formalism that describes scattering in graphene at low energies. We begin by
analyzing the real-space free Green’s function matrix and its analytical expansions at low energy, carefully
incorporating the discrete lattice structure, and arbitrary forms of the atomic-orbital wave function. We then
compute the real-space Green’s function in the presence of an impurity. We express our results both in 2�2
and 4�4 forms �for the two sublattices and the two inequivalent valleys of the first Brillouin zone�. We
compare this with the 4�4 formalism proposed by and Cheianov and Fal’ko �Phys. Rev. Lett. 97, 226801
�2006�� and Mariani et al. �Phys. Rev. B 76, 165402 �2007��, and show that the latter is incomplete. We
describe how it can be adapted to accurately take into account the effects of intervalley scattering on spatially
varying quantities such as the local density of states.
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I. INTRODUCTION

Graphene’s most interesting features are the presence of
two sublattices and the existence of linearly dispersing qua-
siparticles close to the Dirac points, where the valence band
and the conduction band touch. The existence of two sublat-
tices �or equivalently of two atoms per unit cell� necessitates
the introduction of an extra degree of freedom, often called
pseudospin, which gives the Hamiltonian a 2�2 matrix
structure. The Hamiltonian matrix can be diagonalized to
obtain the band structure, which is linear at low energies.

This allows extracting analytically the low-energy physics
by expanding the Hamiltonian close to the nodal points and
focusing entirely on the regions in momentum space close to
these points. However, restricting the analysis to low mo-
menta disregards the real-space discrete structure of the lat-
tice. For a monoatomic lattice, the discrete result can be re-
covered straightforwardly by overlapping the continuous
result with the discrete lattice structure. However graphene’s
two sublattices make the overlap with the lattice less intui-
tive �a careful analysis of the real-space discrete structure of
the Green’s function is presently lacking�.

Here we derive the first complete real-space Green’s func-
tion in monolayer graphene that takes into account the dis-
crete structure of the lattice and the presence of the two
sublattices. We find that different elements of the matrix
Green’s function are nonzero on different sublattice sites. We
begin by analyzing the full real-space Green’s function valid
at arbitrary energy. This cannot be evaluated analytically, but
can be obtained by performing a two-dimensional numerical
integral. Our formalism allows us to describe both localized
and extended atomic-orbital wave functions. Subsequently
we derive analytically the discrete low-energy real-space
Green’s function, which we first write as a 2�2 matrix �us-
ing two sublattice indices�. This is completely general and
incorporates the existence of the two inequivalent valleys
without requiring the use of 4�4 matrices �two sublattice
and two valley indices�. However, in order to make connec-
tion with the previously derived analytical 4�4
formalism,1,2 we rewrite the Green’s function in 4�4 lan-

guage, and compare our result with the real-space 4�4
Green’s function derived in Ref. 2.

We then apply our formalism to describe impurity scatter-
ing. We use the Born approximation to relate the free Green’s
function to the Green’s function in the presence of an impu-
rity, and to calculate the local density of states �LDOS�. In
the 2�2 formalism, the density of states can be obtained
simply from the trace of the Green’s function matrix. How-
ever, in the 4�4 formalism the density of states is the sum
of the traces of the four blocks that compose the 4�4 matrix
Green’s function. This modifies the 4�4 formalism of,1,2

and allows it to describe correctly the effects of internodal
scattering.

Indeed, for localized impurities �in agreement with Refs.
3 and 4�, both the 2�2 and the corrected 4�4 formalisms
describe accurately the existence of the short-wavelength
oscillations5–7 generated by internodal scattering. Moreover,
these formalisms predict that these oscillations decay as
1 /r,3 slower than the long-wavelength 1 /r2 oscillations gen-
erated by intranodal scattering,1,2 and in agreement with re-
cent experimental observations.6 On the other hand, the
original form of the 4�4 formalism,1,2 while capturing ac-
curately the features of the intranodal Friedel oscillations
�FO�, cannot capture the short-wavelength internodal FO for
any type of impurity.

In Sec. II we compute the Green’s function at arbitrary
energy. In Sec. III we analytically evaluate it at low energy:
in Sec. III A we approximate the form of the atomic orbitals
by delta functions and we compute the Green’s function,
writing it as a 2�2 matrix. In Sec. III B we generalize this to
finite-size orbitals. In Sec. III C we rewrite this Green’s func-
tion in 4�4 language and compare it to the one proposed in
Ref. 2. In Sec. IV we use the Born approximation to compute
the generalized Green’s function in the presence of an impu-
rity. In Sec. V we calculate the dependence of the LDOS on
position. We conclude in Sec. VI. In the Appendix we
present the derivation of the imaginary-time Green’s function
in momentum space.
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II. GREEN’S FUNCTION

The tight-binding Hamiltonian for a graphene monolayer
is given by

H = − t�
�ij�

�aj
†bi + h.c.� , �1�

where t is the nearest-neighbor hopping amplitude and �ij�
denotes summing over the nearest neighbors. In momentum
space this Hamiltonian can be written as

H = �
k��BZ

�a�
†�k��b��k��f�k�� + h.c.� , �2�

where

f�k�� = − t�e−ik�·��1 + e−ik�·��2 + e−ik�·��3� , �3�

and the integral is performed over the first Brillouin zone

�BZ�. Also, ��1	a
3x̂ /2+aŷ /2, ��2	−a
3x̂ /2+aŷ /2, and

��3	−aŷ �as depicted in Fig. 1�, where a is the distance
between two nearest neighbors. As described in Ref. 8 there
are multiple equivalent choices for f�k��, depending on the
tight-binding basis used, and on the definition of the Fourier
transform �FT� of the real-space operators ai and bi. Choice
�3� makes the calculations more transparent and will be used
throughout this paper.

The real-space imaginary-time matrix Green’s function
can be defined as

G���r�,i�n� 	 �
R� i,R

�
j

�c�j
† �i�n�c�i�i�n����R� �j − R� �i − r�� , �4�

where the sum is performed over all unit-cell sites R� i,j, with

R� j =na�1+ma�2, and j= �n ,m� specifying the position of one
graphene unit cell. Here we take a�1=a
3x̂ /2+3aŷ /2 and
a�2=−a
3x̂ /2+3aŷ /2. Also, � ,�=A ,B such that the opera-
tors cAi

† �i�n�	ai
†�i�n� and cBi

† �i�n�	bi
†�i�n� denote creating

an electron with energy i�n at sites of the sublattice A �R� Ai

=R� i+��A=R� i� and of the sublattice B �R� Bi=R� i+��B�, respec-

tively, where ��A=0 and ��B=��3=−ŷa.

The definition in Eq. �4� stems from assuming that the
atomic orbitals are delta function localized at the atomic lat-
tice sites. If the atomic orbitals have a finite extent, Eq. �4� is
no longer valid, and the delta functions need to be replaced
by continuous functions. This will be discussed in more de-
tail in Sec. III B.

The corresponding momentum-space Green’s function
can be obtained by simply taking a FT of the real-space
Green’s function,

G���k�,i�n� 	 � d2r�G�r�,i�n�eik�·r�. �5�

The advantage of this generalized Green’s function is that it
is defined for arbitrary values of k�, and not only in the first
BZ.

We can easily show �see the Appendix for details� that
this Green’s function can be related to the two-point function
of momentum-space operators,

G���k�,i�n� = �c�
†�k�,i�n�c��k�,i�n�� . �6�

While, by construction, the expectation value is defined only
for k� �BZ, as described in the Appendix, the above relation
should be understood as evaluating the form of G�k�� inside
the BZ, and then expanding the validity of the functional
form for arbitrary k�.

In order to obtain the retarded real-time unperturbed
Green’s function we calculate the expectation value with re-
spect to Hamiltonian �2� using an analytical continuation
i�n→�+ i�,

G0�k�,�� = �� + i� f�k��

f��k�� � + i�
�−1

. �7�

By construction, the real-space unperturbed Green’s function
can be related to the momentum space G0�k� ,�� by

G0�r�,�� =� d2k�

4�2G0�k�,��e−ik�·r�, �8�

where we stress again that the integral is performed over the
entire momentum space, and not over the first BZ. Dividing
the momentum space in BZs, we can rewrite the components
of the Green’s function matrix as

G��
0 �r�,�� = �

Q� 	��RL

�
k��BZ

d2k�

4�2G��
0 �k� + Q� 	�,��e−ik�·r�e−iQ� 	�·r�

= �
Q� 	��RL

�
k��BZ

d2k�

4�2G��
0 �k�,��e−ik�·r�e−iQ� 	�·�r�+���−����,

�9�

where a�1
�= x̂2� /
3a+ ŷ2� /3a and a�2

�=−x̂2� /
3a+ ŷ2� /3a,

such that Q� 	�=	a�1
�+�a�2

� are the reciprocal-lattice �RL� vec-
tors, and 	 ,� are arbitrary integers. Here we used the

fact that, as described in Ref. 8, G��
0 �k� +Q� 	� ,��

=G��
0 �k� ,��eiQ� 	�·����−����. The sum over the reciprocal-lattice

vectors can be performed to yield
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FIG. 1. �a� Hexagonal honeycomb lattice of graphene and �b� its
band structure �b�. In �b� the equal-energy contours are drawn, and
the Brillouin zone is indicated by dashed lines. The Dirac points K
and K� are marked by arrows, and the reciprocal-lattice vectors a�1,2

�

are also drawn.

CRISTINA BENA PHYSICAL REVIEW B 79, 125427 �2009�

125427-2



G��
0 �r�,�� = �

j=�m,n�
��r� − R� j + ��� − ����

��
k��BZ

d2k�

4�2G��
0 �k�,��e−ik�·r�

= �
j=�m,n�

��r� − R� j + ��� − ����G̃��
0 �r�,�� , �10�

where G̃0�r� ,�� is the reduced real-space Green’s function
obtained by integrating the momentum-space Green’s func-
tion only over the first BZ. We note that the AA and BB
components of the Green’s function are nonzero only for the
sites Rj of the A sublattice �we use the convention that an A
atom sits at the origin of the coordinate system�, while the
AB and BA components are nonzero only for B-type sites.

Thus one can obtain the total Green’s function by com-
puting the reduced Green’s function and multiplying it by the
corresponding delta functions in the manner described
above. This is quite general, and valid at arbitrary energy.
However integral �10� can be evaluated only
numerically.3,4,9–11

III. LOW-ENERGY ANALYTICAL EXPRESSIONS

A. Green’s function in 2Ã2 language

At low energy, the Green’s function can be obtained in a
more elegant way by observing that only the regions close to
the nodal points contribute to the FT integral

G0�r�,�� = �

=�,�=�	,��

� d2q�

4�2G
j
0 �q� ,��e−i�q�+K� 
��·r�, �11�

where8

K� 
� = 

a�1

� − a�2
�

3
+ 	a�1

� + �a�2
�.

Here 
=� is the valley index �there are two such points for
each unit cell of the reciprocal space� and �= �	 ,��, such
that Q� 	�=	a�1

�+�a�2
��RL are RL vectors. For example, the

most used valley pair containing two corners of the first BZ
is described in this notation as K� 	K� +�0,0�= �4� /3
3,0� and
K� �	K� −�0,0�= �−4� /3
3,0�. Also G
�

0 �q��	G
�
0 �q� +K� 
�� and

q� is a small deviation from a nodal point. Thus we obtain

G0�r�,�� = �

,�

G
�
0 �r�,��e−iK� 
�·r�, �12�

where

G
�
0 �r�,�� 	 � d2q�

4�2G
�
0 �q� ,��e−iq� ·r�. �13�

The G
�
0 �r� ,�� functions can be calculated exactly by linear-

izing f�k�� near the nodal points,

G
�
0 �r�,��

 �� H0
�1��z� iz	��
x − iy�H1

�1��z�/r
iz	�

� �
x + iy�H1
�1��z�/r H0

�1��z�
� ,

�14�

where r= r�, z	�r /v, v=3ta /2, H0,1
�1��z� are Hankel func-

tions, and z	�=e−iK� 
,�	,��·��
�

B−��A�=e2i��	+��/3. Noting that the
sum over the reciprocal-lattice vectors �	 ,�� can be per-

formed to obtain a sum of delta functions centered on the R� j
sites, we obtain

G0�r�,�� = �

=�

G

0�r�,�� , �15�

with

G

0�r�,��  �

j=�m,n�
�e−i
r�·K�� ��r� − R� j�H0

�1��z� i��r� − R� j − ��B��
x − iy�H1
�1��z�/r

i��r� − R� j + ��B��
x + iy�H1
�1��z�/r ��r� − R� j�H0

�1��z�
� . �16�

This can be evaluated to yield

G0�r�,��  2 �
j=�m,n�

�� ��r� − R� j�H0
�1��z�cos�K� · r�� ��r� − R� j − ��B��1�r��H1

�1��z�

��r� − R� j + ��B��2�r��H1
�1��Z� ��r� − R� j�cos�K� · r��H0

�1��z�
� , �17�

where �1,2�r��= �sin�K� ·r��x�cos�K� ·r��y� /r, K� =K� +�0,0�= �a�1
�−a�2

�� /3. The factors eiK� ·r� in the Green’s function have also been
discussed in Ref. 12.
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B. Extended atomic orbitals

The above derivation of the Green’s function is valid if
the atomic orbitals are fully localized. More generally, we
can take into account the finite extension of the atomic or-
bitals by replacing the delta functions in definition �4� of the
Green’s function by a finite-extent function ��r��2, centered
at r�=0,

G���r�,i�n� = �
R� i,R

�
j

�c�j
† �i�n�c�i�i�n����R� �j − R� �i − r��2.

�18�

A possible choice for ��r��2 is a Gaussian ���r��2=e−r2/la
2
�,

where la is the “radius” of an atomic orbital. We can see from
the derivation in Eq. �A2� of the Appendix that the FT of the
real-space Green’s function is no longer equal to a two-point
function of momentum-space operators. For simple forms of
�2 such as the Gaussian, the integrals in Eq. �A2� can still
be performed analytically, but the two-point function in Eq.
�A4� should be multiplied by a momentum-dependent factor
that decays at large momenta. In the low-energy limit, this
translates into a decay of G
�

0 �q� ,�� with the magnitude of

K� 
�. Hence the nodal points do not contribute equally to the
sum in Eq. �12�, which cannot in general be evaluated ana-
lytically. Therefore analytic forms �16� and �17� of the
Green’s function can only be used when the extent of the

atomic orbitals is negligible. �Also, we note that if the orbit-
als are not fully localized one cannot find the Green’s func-
tions by simply giving a finite extent to the delta functions in
Eqs. �16� and �17�; this breaks the hexagonal symmetry of
the lattice for any point in space which is not a lattice point.�

If the extent of the atomic orbitals is finite, the Green’s
function can be obtained from Eq. �18�. The two-point func-
tion of the c�,� operators is simply the Fourier transform of
the momentum-space two-point function �with the momen-
tum integral performed over the first BZ�, which needs to be
overlapped with the atomic-orbital wave functions using Eq.
�18�.

However, this integral over the first BZ cannot be evalu-
ated analytically. To obtain the low-energy analytical behav-
ior of the Green’s function one can start from Eq. �12� and
use the fact that for finite-size atomic orbitals, G
�

0 �q� ,�� de-

cays with the magnitude of K� 
�. This implies that the sum in
Eq. �12� is dominated by the nodal points that are closest to
the origin of the first BZ. Their exact number and corre-
sponding weights depend on the exact atomic-orbital func-
tion. The simplest approximation is to consider that only the
nodal points at the corners of the first BZ contribute.3 This
yields

G0�r�,�� = �

=�

G

0�r�,�� , �19�

with

G

0�r�,��  �� �� 
�r�� · I�H0

�1��z� i�� 
�r�� · Z� 
�
x − iy�H1
�1��z�/r

i�� 
�r�� · Z� 

��
x + iy�H1

�1��z�/r �� 
�r�� · I�H0
�1��z�

� , �20�

where �� 
�r��= �e−ir�·K� 
�0,0� ,e−ir�·K� 
�0,
� ,e−ir�·K� 
�−
,0��, I�= �1,1 ,1�,
and Z� 
= �1,e2i�
/3 ,e−2i�
/3�.

C. Low-energy analytical form for the Green’s function in the
4Ã4 basis

It is interesting to note that instead of performing the sum
over 
, one can also write the Green’s function as a 4�4
matrix, with indices corresponding to the A+ ,B+ ,A− ,B− com-
ponents

G

�
0 �r�,�� = �

�G


0�r�,�� . �21�

We can then compare the above Green’s function �where
G


0�r� ,�� was derived in Eq. �16�� to the 4�4 Green’s func-
tion proposed in Ref. 2. The latter has a similar structure,
with G


0�r� ,�� being given by

G

0�r�,��  � H0

�1��z� i�
x − iy�H1
�1��z�/r

i�
x + iy�H1
�1��z�/r H0

�1��z�
� .

�22�

The main differences between this Green’s function and the
Green’s function we derived in Eq. �16� for localized orbitals
are �1� the discrete structure and �2� the presence of the os-

cillatory terms eiK� ·r�. These two factors are crucial to explain
the short-scale fluctuations of the system.

IV. GENERALIZED GREEN’S FUNCTION IN THE
PRESENCE OF AN IMPURITY

To describe systems that are not translationally invariant
�like in the presence of an impurity�, one needs the “full”
Green’s function matrix, defined as

G���r�1,r�2,i�n� 	 �
R� i,R

�
j

�c�j
† �i�n�c�i�i�n��

���R� �i − r�1���R� �j − r�2� . �23�
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For a translationally invariant system with one atom per
unit cell, the relation between the usual Green’s function and
the full one is simply G0�r�2−r�1 , i�n�=G0�r1 ,r2 , i�n�. Indeed,
for a monoatomic system, the difference r�1−r�2 can be a Bra-
vais lattice vector only if r�1 and r�2 are both Bravais lattice

vectors. This yields �i,j��r�1−r�2−R� i+R� j�=�i,j��r�1−R� i���r�2

−R� j�. �We use a normalization of the delta function in which

��r�−R� i�=N if r�=R� i and 0 otherwise, where N is the total
number of unit cells in the crystal.� For graphene, things are
however a bit more complicated. Thus, if r�2 is on a site of
type A, the components G�B

0 are zero, while the components
G�B

0 are not. In general the relation between G0 and G0 can
be written as

G��
0 �r�1,r�2,i�n� = �

j=�m,n�
G��

0 �r�2 − r�1���r�2 − R� �j� . �24�

We would now like to use the above formalism to care-
fully calculate the corrections to the Green’s functions in the
presence of an impurity. In the Born approximation �our
analysis also applies to the T-matrix approximation if the
impurity potential is localized�, the impurity corrections to
the full Green’s function are given by

�G�r�1,r�2,i�n� = �
r�3

G0�r�1,r�3,i�n� · û�r�3� · G0�r�3,r1,i�n� ,

�25�

where û�r�� is the scattering potential matrix and the dot �� · ��
denotes matrix multiplication.

At low energy, an analytical expression for G0 can be
obtained directly from Eq. �17� and substituted in the above
expression. However, it is sometimes more transparent to use
expansion �11� to write

�G�r�1,r�2,i�n� = �

,
��,��

�
r�3

G
�
0 �r�1,r�3,i�n� · û�r�3� · G
���

0

��r�3,r�2,i�n�ei�K� 
�·r�1−K� 
���·r�2�. �26�

For r�1=r�2 this equation allows us to see explicitly that each
internodal scattering process contributes at a wave vector

corresponding to the difference between K� 
j and K� 
�j�. Also,
we can easily modify Eq. �26� to approximate the spatially
dependent matrix û�r�3� by a matrix û, which is independent
of position, but that depends explicitly on 
, 
�, � and ��:

û�r�3�→ û

�
���. �For example, for a localized impurity, the scat-

tering is independent of momentum so û should be indepen-
dent of 
, 
�, � and ��. However, if the impurity is extended,

the internodal scattering is suppressed and û

�
����

�����.�.

In order to make connection with the 4�4 formalism
described in Refs. 1 and 2 we rewrite Eq. �26� as

�G�r�1,r�2,i�n� = �

,
�

�G

��r�1,r�2,i�n� �27�

with

�G

��r�1,r�2,i�n� = �
r�3

G

0�r�1,r�3,i�n� · û�r�3� · G
�

0 �r�3,r�2,i�n� ,

�28�

where G

0 can be extracted from Eqs. �16� and �24�. This

corresponds to a 4�4 expression

�G

��r�1,r�2,i�n� = �
r�3

�

1,
2

G

1

0 �r�1,r�3,i�n� · û
1
2
�r�3�

· G
2
�
0 �r�3,r�2,i�n� , �29�

where G
1
2

0 	�
1
2
G
1

0 �Eq. �20��.
However, as can be seen from Eq. �27�, the physical prop-

erties of graphene are not related directly to the 4�4
Green’s function matrix, but to the sum of the four 2�2
blocks that compose it. Thus, the density of states is given by

��r�,�� = −
1

�
�

,
�

Im�Tr�G

��r�,r�,i�n → � + i���� . �30�

This differs from

��r�,�� = −
1

�
�




Im�Tr�G

�r�,r�,i�n → � + i���� ,

which was proposed in Refs. 1 and 2. Together with the form
of the full Green’s function presented in Eq. �17�, prescrip-
tion �30� is a crucial factor in describing correctly the effects
of internodal 
→
� scattering using a 4�4 formalism.

V. LDOS IN THE PRESENCE OF A LOCALIZED
IMPURITY

We now focus on a simple limit when the impurity is
localized on an A atom, �delta-function potential�, for which
we obtain

�G�r�1,r�2,i�n� = G0�r�1,0,i�n� · û · G0�0,r2,i�n� , �31�

where û= ��1,0� , �0,0��. For localized atomic orbitals this
yields

��r�� = −
1

�
Im�GAA

0 �− r�,��GAA
0 �r�,�� + GAB

0 �− r�,��GBA
0 �r�,���

 −
1

�
�

j=�m,n�
Im���r� − R� Aj�H0

�1��z�2cos�K� · r��2

+ ��r� − R� Bj��1�r��2H1
�1��z�2� . �32�

Far away from the impurity �z�1� the impurity gives rise to
1 /r decaying oscillations on both sublattices. As mentioned
in Refs. 3, 4, and 13 the oscillations due to intranodal scat-
tering have alternating signs on the A and the B sublattices.
Thus the dominant 1 /r behavior cancels if one coarse-grains
the system so that the A and B atoms in a unit cell are
measured together. This is what is expected in a real-space
LDOS measurement in a real graphene sample due to the fact
that the A and the B atomic orbitals have a finite overlap. The
A and the B oscillations are also mixed together when one
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measures the FT of the local density of states. Indeed, the
intranodal oscillations give rise to a disk in the center of the
BZ corresponding to 1 /r2 decaying oscillations, and not to a
ringlike singularity, as for 1 /r oscillations.3

For internodal scattering, we can see that the 1 /r decaying
oscillations do not cancel between two neighboring A and B
atoms.3,4 This gives rise to much more robust short-
wavelength oscillations, which can be observed for larger
areas around the impurity. These translate into rings of high
intensity in the FT of the LDOS close to the corners of the
BZ. The difference between the intranodal and the internodal
FO was confirmed by a recent experiment,6 which observed
no ring in monolayer graphene close to the center of the BZ,
and detected rings close to the corners of the BZ.

We should note that by using the formalism in Refs. 1 and
2, the 1 /r decaying short-wavelength oscillations are not ac-
curately retrieved. For example, no 1 /r decaying internodal
oscillations arise, even in the presence of a localized impu-
rity. As we show here, this can be corrected by using the
expression of the Green’s function presented in Eq. �17�, and
correct prescription �30� to extract the LDOS starting from
the 4�4 full Green’s function.

VI. CONCLUSIONS

We calculated the complete low-energy free Green’s func-
tion for monolayer graphene. We expanded carefully the
Green’s function at low energy, paying particular attention to
incorporate the effects of the discrete structure of the
graphene bipartite lattice, and of the form of the atomic-
orbital wave function. We have also calculated the “full”
Green’s function in the presence of impurity scattering. We
have found that the 4�4 formalism proposed in Refs. 1 and
2 to study the low-energy physics of graphene, while de-
scribing correctly intranodal scattering, does not accurately
capture the effects of internodal scattering on local quanti-
ties, such as the LDOS. We have shown that the missing
pieces in the 4�4 formalism in Refs. 1 and 2 are �1� the
discrete structure, �2� the presence of the oscillatory terms

eiK� ·r� in the Green’s function, and �3� the prescription to com-
pute the physical properties not from the 4�4 matrix itself,
but rather from the sum of the four 2�2 block that makes up
the 4�4 matrix. We believe it is important to check whether,
besides the LDOS, there exist other spatially dependent
quantities that are inaccurately described by the incomplete
4�4 formalism. We have also presented a 2�2 formalism
that is more general, and can be used straightforwardly for
any type of disorder calculation, and for any type of atomic-
orbital wave function. It would be interesting to use our for-
malism to calculate the real-space dependence of the LDOS
in the presence of an extended impurity.
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APPENDIX

Here we show that the FT of the continuum real-space
Green’s function defined in Eq. �4� corresponds indeed to the
two-point function of momentum-space operators,

G���r�,i�n� = �
R� i,R

�
j

�c�j
† �i�n�c�i�i�n����R� �j − R� �i − r�� .

�A1�

The FT of the real-space Green’s function is

G���k�,i�n� 	 � d2r�G���r�,i�n�eik�·r�

=� d2r� �
R� i,R

�
j

�c�j
† �i�n�c�i�i�n����R� �i − R� �j − r��eik�·r�

= �
R� i,R

�
j

�
k�1�BZ

�
k�2�BZ

�c�
†�k�1,i�n�c��k�2,i�n��

�ei�k�1−k��·R� �iei�k�−k�2�·R� �j . �A2�

Noting that �R� i
ei�k�−k���·R� �i =�Q� 	��RLexp�−iQ� 	� ·������k� −k��

+Q� 	��, where Q� 	�=	a�1
�+�a�2

� is any vector of the RL, ��A

=0, and ��B= �0,−aŷ�, we have

G���k�,i�n� = �c�
†�k� + Q� 	�,i�n�c��k� + Q� 	�,i�n��k�+Q� 	��BZ

� exp�− iQ� 	� · ���� − ����� . �A3�

We can see that this relation holds for arbitrary k, inside and

outside the first BZ. Using the fact that c��k� +Q� 	� , i�n�
=c��k��e−iQ� 	�·���, and c�

†�k� +Q� 	� , i�n�=c��k��eiQ� 	�·��� we obtain

G���k�,i�n� = �c�
†�k�,i�n�c��k�,i�n�� . �A4�

We should note that if one uses the alternative �I� basis pre-
sented in Ref. 8, the different components of the matrix
Green’s function acquire different phases, consistent with the
fact that the density of states written in this basis in momen-
tum space is a superposition of two-point functions of A and
B operators with a relative phase factor.8

Another observation one should make is that if we repeat
the above exercise for the full Green’s function defined in
Eq. �23�, we find

G�k�1,k�2,i�n� 	 � d2r�1� d2r�2G�r�1,r�2�eik�1·r�1eik�2·r�2

= �c�
†�k�1,i�n�c��k�2,i�n�� . �A5�
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